A semantic relatedness approach to classifying opinion from web reviews

  1. Balahur Dobrescu, Alexandra
  2. Montoyo Guijarro, Andrés
Revista:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Año de publicación: 2009

Número: 42

Páginas: 47-54

Tipo: Artículo

Otras publicaciones en: Procesamiento del lenguaje natural

Resumen

Los últimos años han marcado el inicio y la rápida expansión de la web social, donde cada persona puede expresar su libre opinión sobre diferentes "objetos", tales como productos, personas, tópicos de política etc. en blogs, foros o portales Web de comercio electrónico. A su vez, el rápido crecimiento del volumen de información en la web ha ido permitiendo a los usuarios la toma de decisiones mejores y más informadas. A raíz de esta expansión ha surgido la necesidad de desarrollar sistemas especializados de PLN que automáticamente escaneen la web en busca de las opiniones expuestas (que recuperen, extraigan y clasifiquen las opiniones existentes dada una consulta). La minería de opiniones (análisis de sentimientos) ha demostrado ser un problema difícil debido a la gran variabilidad semántica del texto libre. En este artículo se propone un método para extraer, clasificar y resumir opiniones sobre productos concretos utilizando críticas realizadas en la Web. El método se basa en una taxonomía de características de productos previamente construida, el cálculo de la proximidad semántica entre conceptos por medio de la Distancia Normalizada de Google y el método de aprendizaje automático SVM. Finalmente, demostramos que nuestro enfoque supera los resultados base de la tarea y ofrece una alta precisión y una alta confianza en las clasificaciones obtenidas.