"Anaerobic" critical velocity and swimming performance in young swimmers

  1. Costa, Aldo M.
  2. Pérez Turpin, José Antonio
  3. Neiva, Henrique P.
  4. Marinho, Daniel A.
  5. Amorim, Rui A.
Revista:
Journal of Human Sport and Exercise: JHSE

ISSN: 1988-5202

Año de publicación: 2011

Volumen: 6

Número: 1

Páginas: 80-86

Tipo: Artículo

DOI: 10.4100/JHSE.2011.61.09 DIALNET GOOGLE SCHOLAR lock_openRUA editor

Otras publicaciones en: Journal of Human Sport and Exercise: JHSE

Resumen

Recent studies explored a new trend of critical velocity as a parameter to evaluate and monitor anaerobic training. The aim of this study was to analyse the relationship between anaerobic critical velocity and short distances performances in the four swimming techniques, in young swimmers. 12 male and 8 female swimmers (mean ±SD; age 12.10 ± 0.72 years old) performed maximal 10, 15, 20 and 25 m in the four conventional swimming techniques to determine critical velocity from the distance-time relationship. 50, 100 and 200 m individual best performances of the season were used to compare with the critical velocity assessed. The mean ± SD values of anaerobic critical velocity (m.s-1) were 1.10 ± 0.22, 1.07 ± 0.10, 0.89 ± 0.16 and 1.27 ± 0.16, for butterfly, backstroke, breaststroke and front crawl, respectively. Anaerobic critical velocity was correlated with the 50 and 100 m swimming event velocities in backstroke (r = 0.85; r = 0.86), breaststroke (r = 0.92; r = 0.90) and front crawl (r = 0.85; r = 0.91). Considering the 200 m swimming performance, relationships were found in front crawl (r = 0.90) and in breaststroke (r = 0.89). Differences between anaerobic critical velocity and swimming performance were observed in all swimming techniques for the 50 m and in breaststroke, front crawl and backstroke for the 100m. There were no differences regarding the 200 m swimming performance. These findings suggest that anaerobic critical velocity may be managed as a control parameter and even to prescribe training for young swimmers.

Referencias bibliográficas

  • Abe D, Tokumaru H, Niihata S, Muraki S, Fukuoka Y, Usui S, Yoshida T. Assessment of short-distance breaststroke swimming performance with critical velocity. J Sports Sci Med. 2006; 5:340-348.
  • Costa AM, Silva A, Louro H, Reis V, Garrido N, Marques M, Marinho D. Can the curriculum be used to estimate critical velocity in young competitive swimmers? J Sports Sci & Med. 2009; 8:17-23.
  • Dekerle J, Pelayo P, Delaporte B, Gosse N, Hespel JM, Sidney M. Validity and reliability of critical speed, critical stroke rate and anaerobic capacity in relation to front crawl swimming performances. Int J Sports Med. 2002; 23:93-98. doi:10.1055/s-2002-20125
  • Dekerle J, Pelayo P, Clipet B, Depretz S, Lefevre T, Sidney M. Critical Swimming Speed Does not Represent the Speed at Maximal Lactate Steady State. Int J Sports Med. 2005; 26:524-530. doi:10.1055/s-2004-821227
  • Di Prampero PE, Dekerle J, Capella C, Zamparo P. The critical velocity in swimming. Eur J Appl Physiol. 2008; 102:165-171. doi:10.1007/s00421-007-0569-6
  • Fernandes R, Aleixo I, Soares S, Vilas-Boas JP. Anaerobic Critical Velocity: a new tool for young swimmers training advice. In: P Noemie, Beaulieu (Eds). Physical activity and children: new research. Nova Science Publishers: New York; 2008. 211-223.
  • Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001; 31:725-41.
  • Greco CC, Pelarigo JG, Figueira TR, Denadai BS. Effects of gender on stroke rates, critical speed and velocity of a 30-min swim in young swimmers. J Sports Sci Med. 2007; 6:441-447.
  • Hohmann A. The Influence of Strength, Speed, Motor coordination and Technique on the Performance in Crawl Sprint. In: KL Keskinen, PV Komi, AP Hoolander (Eds). Biomechanics and Medicine in Swimming VIII. Gummerus Printing: Jyväskylä; 1999. 191-196.
  • Lloyd BB. The energetics of running: an analysis of world records. Adv Science. 1966; 22:515-530.
  • Martin L, Whyte G. Comparison of critical swimming velocity and velocity at lactate threshold in elite triathletes. Int J Sports Med. 2000; 21:366-368. doi:10.1055/s-2000-3786
  • Monod H, Scherrer J. The work capacity of synergic muscular group. Ergonomics. 1965; 8:329-338. doi:10.1080/00140136508930810
  • Neiva HP, Fernandes R, Vilas-Boas JP. Anaerobic critical velocity in four swimming techniques. Int J Sports Med. 2011; 32(3):195-198 doi:10.1055/s-0030-1268474
  • Ogita F. Energetics in competitive Swimming and Its Application for Training. Rev Port Cien Desp. 2006; 6:117-182.
  • Olbrecht J. The science of winning. Planning, periodizing and optimizing swim training. Luton, England: Swimshop, 2000.
  • Olbrecht J, Mader A. Individualization of training based on Metabolic Measures. In P Hellard M, C Sidney, D Fauquet, Lehénaff (Eds). First International Symposium Sciences and practices in Swimming. Atlantica: Paris; 2006. 109-115.
  • Smith D, Norris S, Hogg M. Performance evaluation of swimmers. Sports Med. 2002; 32:539-554. doi:10.2165/00007256-200232090-00001
  • Soares S, Fernandes R, Vilas-Boas JP. Analysis of critical velocity regression line informations for different ages: from infant to junior swimmers. In: JC Chatard (Ed). Biomechanics and Medicine in Swimming IX. Publications de L'Université de Saint-Eacute;tienne: Saint-Étienne; 2003. 397-402.
  • Troup JP, Trappe TA. Applications of Research in Swimming. In: M Miyashita, Y Mutoh, A Richardson (Eds). Medicine and Science in Aquatic Sports. Basel: Karger; 1994. 199-205.
  • Vilas-Boas JP. The Leon Lewillie Memorial Lecture: Biomechanics and Medicine in Swimming, Past, Present and Future. In: K Per-Ludvik, KS Robert, C Jan (Eds). Biomechanics and Medicine in Swimming XI. Norwegian School of Sport Science: Oslo; 2010. 12-19.
  • Wakayoshi K, Ikuta K, Yoshida T, Udom,Moritani T, Mutoh Y, Miyashita M. Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. Eur J Appl Physiol. 1992; 64:153-157. doi:10.1007/BF00717953
  • Wakayoshi K, Yoshida T, Udo M, Harada T, Moritani T, Mutoh Y, Miyashita M. Does critical swimming velocity represent exercise intensity at maximal lactate steady state? Eur J Appl Physiol. 1993; 66:90-95. doi:10.1007/BF00863406
  • Wells G, Schneiderman-Walker J, Plyley M. Normal Physiological Characteristics of Elite Swimmers. Pediatr Exerc Sci. 2006; 17:30-52.
  • Wright B, Smith D. A protocol for the determination of critical speed as an index of swimming endurance performance. In: M Miyashita, Y Mutoh, A Richardson (Eds). Medicine and Science in Aquatic Sports. Basel: Karger; 1994. 55-59.