On the Finite-Sample Biases in Nonparametric Testing for Variance Constancy

  1. Rodrigues, Paulo M.M.
  2. Rubia Serrano, Antonio
Revista:
Notas técnicas: [continuación de Documentos de Trabajo FUNCAS]

ISSN: 1988-8767

Año de publicación: 2007

Número: 304

Tipo: Documento de Trabajo

Otras publicaciones en: Notas técnicas: [continuación de Documentos de Trabajo FUNCAS]

Resumen

In this paper we analyse the small-sample size distortions of nonparametric CUSUM tests for variance stability resulting from the long-run variance estimation. The long-run variance estimator is a key factor necessary to ensure asymptotically pivotal test statistics. We discuss the large sample properties of these tests under standard and recently developed fixed- b bandwidth asymptotic theory for kernel heteroskedasticity and autocorrelation consistent (HAC) estimators, and analyse the finite sample performance for different data generation processes of major empirical relevance. Despite the good properties evidenced by the large-sample theory, important distortions may arise when the empirical processes exhibit strongly-persistent volatility and excess kurtosis even in relatively large samples. In this context, consistent (inconsistent) HAC estimators may lead to over-sized (under-sized) tests. Hence, nonparametric tests may lack power to distinguish between a strongly persistent -yet stationary- process and a process with a structural break.