Estudio y diseño de técnicas de aprendizaje automático orientadas a la detección temprana de anomalías en la evaluación docente

  1. Gallego, Antonio-Javier 1
  2. Rico Juan, Juan Ramón 1
  3. Calvo-Zaragoza, Jorge 1
  4. Castellanos, Francisco J. 1
  5. Rizo, David 1
  1. 1 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

Libro:
Memorias del Programa de Redes-I3CE de calidad, innovación e investigación en docencia universitaria: Convocatoria 2017-18
  1. Roig-Vila, Rosabel (coord.)

Editorial: Instituto de Ciencias de la Educación ; Universidad de Alicante / Universitat d'Alacant

ISBN: 978-84-09-07041-1

Año de publicación: 2018

Páginas: 2923-2938

Tipo: Capítulo de Libro

Resumen

Uno de procesos más importantes en casi todos los modelos de enseñanza universitaria es la evaluación. Los criterios que se establecen en una asignatura orientan la forma en la que se obtiene la calificación final del alumno. Es por ello importante realizar un seguimiento continuado del aprendizaje del estudiante y de sus calificaciones, permitiendo de este modo la detección de anomalías para proceder con una intervención inmediata que permita corregir la situación. Normalmente, en los primeros cursos universitarios el número de alumnos es elevado, lo que redunda en detrimento del control o seguimiento que se le puede realizar a los estudiantes por parte del profesor. En este trabajo se propone un estudio de 24 algoritmos de inteligencia artificial, pertenecientes a diferentes categorías, para la predicción de la siguiente calificación de prácticas. Los resultados experimentales muestran cómo las categorías basadas en máquinas de vectores soporte o los de aumentado de gradiente extremo son los que mejores se ajustan a los datos recogidos.