Descomposición térmica y briquetado de residuos de espumas de poliuretano
- Rafael Font Montesinos Director
Defence university: Universitat d'Alacant / Universidad de Alicante
Fecha de defensa: 24 March 2017
- Mª Ujué Alzueta Anía Chair
- Ignacio Aracil Sáez Secretary
- María Muñoz Fernández Committee member
Type: Thesis
Abstract
El crecimiento económico de una sociedad implica un incremento notable de los ingresos, lo que conlleva un mayor consumo energético y una mayor demanda de bienes de consumo que dan lugar a una mayor generación de residuos. En los últimos años, la Unión Europea (UE) a través de la Directiva 2008/98/CE, ha tratado de promover una gestión de residuos adecuada basada en la siguiente jerarquía: prevención, reutilización, reciclaje, valorización y eliminación, entendiéndose como eliminación la deposición en vertederos. Para los residuos que son inevitablemente generados y que no pueden ser reutilizados o reciclados, como es el caso de los residuos de los colchones, ya que dado su elevado volumen y baja biodegradabilidad no son adecuados para depositarlos en vertederos, es necesario el desarrollo de técnicas de valorización que transformen estos residuos en materias primas para la generación de nuevos productos o en una fuente de energía, dado el potencial energético de estos. Esta Tesis Doctoral abarca, por un lado, los estudios de degradación térmica de residuos de colchones, y, por otro lado, el estudio de la compactación de estos materiales. Siendo los objetivos concretos los enunciados a continuación: - Estudio de la descomposición térmica de la espuma de poliuretano flexible (FPUF). - Estudio de la descomposición térmica de la espuma viscoelástica (VMF). - Estudio de la formación de isocianatos en la pirólisis de la espuma de poliuretano flexible y la espuma viscoelástica. - Estudio de las condiciones de operación óptimas para la fabricación de briquetas de espumas procedentes de los residuos de colchones. Para la consecución del primer objetivo concreto se han realizados dos tipos de estudios diferentes como son el estudio de la cinética de la degradación térmica de FPUF bajo unas condiciones controladas y, el estudio de la generación de contaminantes en procesos de combustión y pirolisis de esta espuma en un reactor a escala de laboratorio. De forma análoga a lo explicado para la FPUF, el estudio de la descomposición térmica de la VMF también se han llevado a cabo un estudio de la cinética de la degradación térmica y un estudio de los contaminantes generados durante su combustión o descomposición en atmosfera inerte (pirólisis) en un reactor a escala de laboratorio. Para completar la caracterización de los contaminantes generados durante la degradación térmica de las espumas FPUF y VMF se ha realizados el análisis de los isocianatos producidos durante la pirolisis de estos compuestos a diferentes temperaturas. Es importante mencionar que esté análisis se realizó durante una estancia de investigación de 3 en el centro de investigación Empa en Suiza, empleando una tecnología que no había sido empleada hasta la fecha en el grupo de investigación, lo que ha servido para aportar una nueva vía de investigación en el grupo. Por último, la consecución del cuarto objetivo es muy importante desde el punto de vista de la gestión de los colchones fuera de uso, dado el elevado volumen que presentan estos residuos. El haber conseguido optimizar las condiciones de compactación de la espuma de poliuretano flexible así como de mezclas de distintas espumas como son la espuma de viscoelástica o la espuma de látex, puede suponer un beneficio considerable en el manejo, transporte y almacenamiento de este tipo de residuos así como un incremento en el poder calorífico de los mismos para su posterior valorización energética reduciendo la dependencia de combustibles fósiles y eliminando así el problema asociado con este tipo de residuos que se acumulan en vertederos. Los resultados obtenidos en el desarrollo de esta tesis doctoral se han publicado en 6 artículos y una Patente nacional. La aplicabilidad de los resultados de esta Tesis Doctoral podrían englobarse en tres grandes bloques: - Por un lado, de los estudios termogravimétricos se ha obtenido la cinética de descomposición de los dos materiales empleados (espuma de poliuretano flexible y espuma viscoelástica) que puede emplearse para el diseño de reactores para llevar a cabo la combustión o pirólisis de este tipo residuos, para la obtención de energía o productos, respectivamente. - El análisis de los contaminantes generados durante la descomposición térmica en condiciones controladas (combustión y pirólisis) de la espuma de poliuretano flexible y la espuma viscoelástica permite valorar la viabilidad del aprovechamiento energético de este tipo de residuos desde el punto de vista de la emisión de compuestos que puedan suponer un riesgo para la salud. - Y, por último, los valores de presión y temperatura obtenidos en el estudio de la fabricación de briquetas a partir de espumas presentes en los colchones no son excesivamente elevados, por lo que este sistema de producción de briquetas puede implantarse en los propios vertederos donde se acumulan los colchones, gracias a un sistema de aprovechamiento energético del biogás generado en la degradación biológica de los residuos orgánicos. Para el desarrollo de la Tesis Doctoral se ha realizado una amplia revisión bibliográfica que se enumera a continuación: [1] I. 845:2006, Cellular plastics and rubbers - Determination of apparent density, in, 2006. [2] E. Abad, K. Martínez, J. Caixach, J. Rivera, Polychlorinated dibenzo-p-dioxins, dibenzofurans and ‘dioxin-like’ PCBs in flue gas emissions from municipal waste management plants, Chemosphere, 63 (2006) 570-580. [3] A. Aboulkas, K. El harfi, A. El Bouadili, Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms, Energy Conversion and Management, 51 (2010) 1363-1369. [4] D.O. Adeosun, Analysis of Fire Performance, Smoke Development and Combustion Gases from Flame Retarded Rigid Polyurethane Foams, in, University of Waterloo, 2014. [5] N. Aeronautics, S. Administration, Spinoff 2005, U.S. Government Printing Office, 2006. [6] M. Altarawneh, B.Z. Dlugogorski, E.M. Kennedy, J.C. Mackie, Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), Progress in Energy and Combustion Science, 35 (2009) 245-274. [7] M. Alves, B. Grignard, S. Gennen, R. Méreau, T. Tassaing, C. Detrembleur, C. Jérôme, Merging carbon dioxide utilisation, bioresources and CO2-based process for sustainable low carbon footprints polyurethanes, in: CO2 Utilisation as a Strong Catalyst for the European Industrial Renaissance (SCOT), Belgium, 2016. [8] H. Anders, Europe's bedding industry meet in Budapest, in, 2014. [9] E.V. Antonakou, K.G. Kalogiannis, S.D. Stefanidis, S.A. Karakoulia, K.S. Triantafyllidis, A.A. Lappas, D.S. Achilias, Catalytic and thermal pyrolysis of polycarbonate in a fixed-bed reactor: The effect of catalysts on products yields and composition, Polymer Degradation and Stability, 110 (2014) 482-491. [10] C. Antwi-Boasiako, B.B. Acheampong, Strength properties and calorific values of sawdust-briquettes as wood-residue energy generation source from tropical hardwoods of different densities, Biomass and Bioenergy, 85 (2016) 144-152. [11] E. Apaydin-Varol, S. Polat, A.E. Putun, Pyrolysis kinetics and thermal decomposition behavior of polycarbonate-a TGA-FTIR study, Thermal Science, 18 (2014) 833-842. [12] W. Apichatachutapan, R. Neff, J. Mullins, T.M. Smiecinski, T.B. Lee, Viscoelastic polyurethane foam, in, Google Patents, 2007. [13] I. Aracil, R. Font, J.A. Conesa, Semivolatile and volatile compounds from the pyrolysis and combustion of polyvinyl chloride, Journal of Analytical and Applied Pyrolysis, 74 (2005) 465-478. [14] I. Aracil, R. Font, J.A. Conesa, Chlorinated and Nonchlorinated Compounds from the Pyrolysis and Combustion of Polychloroprene, Environmental Science & Technology, 44 (2010) 4169-4175. [15] U. Auprakul, A. Promwungkwa, N. Tippayawong, S. Chaiklangmuang, Densified Fuels from Mixed Plastic Wastes and Corn Stover, in: Advanced Materials Research, Trans Tech Publ, 2014, pp. 1117-1121. [16] A. Ayanoğlu, R. Yumrutaş, Production of gasoline and diesel like fuels from waste tire oil by using catalytic pyrolysis, Energy, 103 (2016) 456-468. [17] K. Ballschmiter, I. Braunmiller, R. Niemczyk, M. Swerev, Reaction pathways for the formation of polychloro-dibenzodioxins (PCDD) and —dibenzofurans (PCDF) in combustion processes: II. Chlorobenzenes and chlorophenols as precursors in the formation of polychloro-dibenzodioxins and —dibenzofurans in flame chemistry, Chemosphere, 17 (1988) 995-1005. [18] I. Barbarias, G. Lopez, J. Alvarez, M. Artetxe, A. Arregi, J. Bilbao, M. Olazar, A sequential process for hydrogen production based on continuous HDPE fast pyrolysis and in-line steam reforming, Chemical Engineering Journal, 296 (2016) 191-198. [19] M. Bijloos, G. Lougheed, Smoldering of a flexible polyurethane foam sofa, Institute for Research in Construction, National Research Council Canada, Ottawa, Canada. NRCC-50572, (2009). [20] R. Bilbao, J.F. Mastral, J. Ceamanos, M.E. Aldea, Kinetics of the thermal decomposition of polyurethane foams in nitrogen and air atmospheres, Journal of Analytical and Applied Pyrolysis, 37 (1996) 69-82. [21] I. Blanchet-Letrouvé, A. Zalouk-Vergnoux, A. Vénisseau, M. Couderc, B. Le Bizec, P. Elie, C. Herrenknecht, C. Mouneyrac, L. Poirier, Dioxin-like, non-dioxin like PCB and PCDD/F contamination in European eel (Anguilla anguilla) from the Loire estuarine continuum: Spatial and biological variabilities, Science of The Total Environment, 472 (2014) 562-571. [22] P. Blomqvist, Emissions from Fires Consequences for Human Safety and the Environment, Lund University, 2005. [23] P. Blomqvist, T. Hertzberg, M. Dalene, G. Skarping, Isocyanates, aminoisocyanates and amines from fires—a screening of common materials found in buildings, Fire and Materials, 27 (2003) 275-294. [24] P. Blomqvist, T. Hertzberg, H. Tuovinen, K. Arrhenius, L. Rosell, Detailed determination of smoke gas contents using a small-scale controlled equivalence ratio tube furnace method, Fire and Materials, 31 (2007) 495-521. [25] P. Blomqvist, M.S. McNamee, A.A. Stec, D. Gylestam, D. Karlsson, Detailed study of distribution patterns of polycyclic aromatic hydrocarbons and isocyanates under different fire conditions, Fire and Materials, 38 (2014) 125-144. [26] E.A. Boettner, G.L. Ball, B. Weiss, Combustion products from the incineration of plastics, in, DTIC Document, 1973. [27] M. Boutin, A. Dufresne, C. Ostiguy, J. Lesage, Determination of Airborne Isocyanates Generated During the Thermal Degradation of Car Paint in Body Repair Shops, Annals of Occupational Hygiene, 50 (2006) 385-393. [28] M. Boutin, J. Lesage, C. Ostiguy, J. Pauluhn, M.J. Bertrand, Identification of the isocyanates generated during the thermal degradation of a polyurethane car paint, Journal of Analytical and Applied Pyrolysis, 71 (2004) 791-802. [29] C. Branca, C. Di Blasi, A. Casu, V. Morone, C. Costa, Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion, Thermochim. Acta, 399 (2003) 127-137. [30] W. Buah, A. Cunliffe, P. Williams, Characterization of products from the pyrolysis of municipal solid waste, Process Safety and Environmental Protection, 85 (2007) 450-457. [31] Ö. Çepelioğullar, A.E. Pütün, Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis, Energy Conversion and Management, 75 (2013) 263-270. [32] J.M. Cervantes-Uc, J.I.M. Espinosa, J.V. Cauich-Rodríguez, A. Ávila-Ortega, H. Vázquez-Torres, A. Marcos-Fernández, J. San Román, TGA/FTIR studies of segmented aliphatic polyurethanes and their nanocomposites prepared with commercial montmorillonites, Polymer Degradation and Stability, 94 (2009) 1666-1677. [33] M. Chanda, S.K. Roy, Industrial polymers, specialty polymers, and their applications, CRC Press, 2008. [34] S.R. Chandrasekaran, B. Kunwar, B.R. Moser, N. Rajagopalan, B.K. Sharma, Catalytic Thermal Cracking of Postconsumer Waste Plastics to Fuels. 1. Kinetics and Optimization, Energy and Fuels, 29 (2015) 6068-6077. [35] L.-P. Chang, K.-C. Xie, C.-Z. Li, Release of fuel-nitrogen during the gasification of Shenmu coal in O2, Fuel Processing Technology, 85 (2004) 1053-1063. [36] C.Y.H. Chao, J.H. Wang, Comparison of the Thermal Decomposition Behavior of a Non-Fire Retarded and a Fire Retarded Flexible Polyurethane Foam with Phosphorus and Brominated Additives, Journal of Fire Sciences, 19 (2001) 137-156. [37] D.K. Chattopadhyay, D.C. Webster, Thermal stability and flame retardancy of polyurethanes, Progress in Polymer Science, 34 (2009) 1068-1133. [38] Chee Sien Wong, K.H. Badri, Chemical Analyses of Palm Kernel Oil-Based Polyurethane Prepolymer, Materials Sciences and Applications, 3 (2012) 78-86. [39] T. Chen, M.-X. Zhan, X.-Q. Lin, J.-Y. Fu, S.-Y. Lu, X.-D. Li, A. Buekens, J.-H. Yan, PCDD/Fs inhibition by sludge decomposition gases: effects of sludge dosage, treatment temperature and oxygen content, Aerosol Air Qual Res, 15 (2015) 702-711. [40] X.L. Chen, L.L. Huo, C.M. Jiao, S.X. Li, TG-FTIR characterization of volatile compounds from flame retardant polyurethane foams materials, Journal of Analytical and Applied Pyrolysis, 100 (2013) 186-191. [41] Z. Cheng, H.-l. Chen, Y. Zhang, P. Hack, W.-P. Pan, An application of thermal analysis to household waste, Journal of ASTM International, 4 (2007). [42] B.L.F. Chin, S. Yusup, A. Al Shoaibi, P. Kannan, C. Srinivasakannan, S.A. Sulaiman, Kinetic studies of co-pyrolysis of rubber seed shell with high density polyethylene, Energy Conversion and Management, 87 (2014) 746-753. [43] C.P.S. Commision, Final Rule: Standard for the Flammability (Open Flame) of Mattress Sets, in: 16 CFR Part 1633 Federal Register Vol. 71, United States, 2006, pp. 52. [44] J.A. Conesa, R. Font, A. Fullana, I. Martín-Gullón, I. Aracil, A. Gálvez, J. Moltó, M.F. Gómez-Rico, Comparison between emissions from the pyrolysis and combustion of different wastes, Journal of Analytical and Applied Pyrolysis, 84 (2009) 95-102. [45] J.A. Conesa, A. Fullana, R. Font, Tire Pyrolysis: Evolution of Volatile and Semivolatile Compounds, Energy & Fuels, 14 (2000) 409-418. [46] J.A. Conesa, L. Rey, S. Egea, M.D. Rey, Pollutant Formation and Emissions from Cement Kiln Stack Using a Solid Recovered Fuel from Municipal Solid Waste, Environmental Science & Technology, 45 (2011) 5878-5884. [47] Consumer Product Safety Commision, Final Rule: Standard for the Flammability (Open Flame) of Mattress Sets, in: 16 CFR Part 1633 Federal Register Vol. 71, United States, 2006, pp. 52. [48] N. Couto, V.B. Silva, C. Bispo, A. Rouboa, From laboratorial to pilot fluidized bed reactors: Analysis of the scale-up phenomenon, Energy Conversion and Management, 119 (2016) 177-186. [49] P. Dagaut, P. Glarborg, M.U. Alzueta, The oxidation of hydrogen cyanide and related chemistry, Progress in Energy and Combustion Science, 34 (2008) 1-46. [50] J. Dahlin, M. Spanne, M. Dalene, D. Karlsson, G. Skarping, Size-Separated Sampling and Analysis of Isocyanates in Workplace Aerosols—Part II: Aging of Aerosols from Thermal Degradation of Polyurethane, Annals of Occupational Hygiene, 52 (2008) 375-383. [51] Q. Dai, X. Jiang, F. Wang, Y. Chi, J. Yan, PCDD/Fs in wet sewage sludge pyrolysis using conventional and microwave heating, Journal of Analytical and Applied Pyrolysis, 104 (2013) 280-286. [52] J. Datta, Synthesis and Investigation of Glycolysates and Obtained Polyurethane Elastomers, Journal of Elastomers and Plastics, 42 (2010) 117-127. [53] J. Datta, M. Rohn, Thermal properties of polyurethanes synthesized using waste polyurethane foam glycolysates, Journal of Thermal Analysis and Calorimetry, 88 (2007) 437-440. [54] M. Day, J.D. Cooney, M. MacKinnon, Degradation of contaminated plastics: a kinetic study, Polymer Degradation and Stability, 48 (1995) 341-349. [55] E.J.M. Deliege, D.S.C. Nijdam, A.C. Vlaanderen, European Ecolabel Bed Mattress: LCA and Criteria Proposals Final Report for the EC, Tauw Milieu bv International, The Netherlands, (2010). [56] N. Deng, Y.-f. Zhang, Y. Wang, Thermogravimetric analysis and kinetic study on pyrolysis of representative medical waste composition, Waste Management, 28 (2008) 1572-1580. [57] V.R. Dhara, R. Dhara, The Union Carbide Disaster in Bhopal: A Review of Health Effects, Archives of Environmental Health: An International Journal, 57 (2002) 391-404. [58] S.S. Dosanjh, P.J. Pagni, A.C. Fernandez-Pello, Forced cocurrent smoldering combustion, Combustion and Flame, 68 (1987) 131-142. [59] H. Duan, J. Li, Thermal degradation behavior of waste video cards using thermogravimetric analysis and pyrolysis gas chromatography/mass spectrometry techniques, Journal of the Air & Waste Management Association, 60 (2010) 540-547. [60] M. Edo, I. Aracil, R. Font, M. Anzano, A. Fullana, E. Collina, Viability study of automobile shredder residue as fuel, J Hazard Mater, 260 (2013) 819-824. [61] M.M. Esperanza, R. Font, A.N. Garcı́a, Toxic byproducts from the combustion of varnish wastes based on polyurethane in a laboratory furnace, Journal of Hazardous Materials, 77 (2000) 107-121. [62] M.M. Esperanza, A.N. Garcı́a, R. Font, J.A. Conesa, Pyrolysis of varnish wastes based on a polyurethane, Journal of Analytical and Applied Pyrolysis, 52 (1999) 151-166. [63] European Commission, DIRECTIVE 2010/75/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCILof 24 November 2010 on industrial emissions (integrated pollution prevention and control) (Recast) (Text with EEA relevance), in: European Commission (Ed.), DOUE L 334-17, 2010, pp. 17-119. [64] European Commission, COM(2014) 397 final: Proposal for a Directive of the European Parliament and of the Council amending Directives 2008/98/EC on waste, 94/62/EC on packaging and packaging waste, 1999/31/EC on the landfill of waste, 2000/53/EC on end-of-life vehicles, 2006/66/EC on batteries and accumulators and waste batteries and accumulators, and 2012/19/EU on waste electrical and electronic equipment., in, 2014. [65] European Communities, Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of waste, Official Journal of the European Communities, 332 (2000). [66] P. Evangelopoulos, E. Kantarelis, W. Yang, Investigation of the thermal decomposition of printed circuit boards (PCBs) via thermogravimetric analysis (TGA) and analytical pyrolysis (Py-GC/MS), Journal of Analytical and Applied Pyrolysis, 115 (2015) 337-343. [67] C.S. Evans, Comparison studies of the mechanistic formation of polyhalogenated dibenzo-p-dioxins and furans from the thermal degradation of 2-bromophenol and 2-chlorophenol, in, Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfilment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Catherine Spearing Evans BS, University of the South, Sewanee, 2004. [68] H. Fiedler, C. Lau, G. Eduljee, Statistical analysis of patterns of PCDDs and PCDFs in stack emission samples and identification of a marker congener, Waste Management & Research, 18 (2000) 283-292. [69] R. Font, A. Fullana, J.A. Caballero, J. Candela, A. Garcı́a, Pyrolysis study of polyurethane, Journal of Analytical and Applied Pyrolysis, 58–59 (2001) 63-77. [70] R. Font, A. Gálvez, J. Moltó, A. Fullana, I. Aracil, Formation of polychlorinated compounds in the combustion of PVC with iron nanoparticles, Chemosphere, 78 (2010) 152-159. [71] R. Font, I. Martín-Gullón, M. Esperanza, A. Fullana, Kinetic law for solids decomposition. Application to thermal degradation of heterogeneous materials, Journal of Analytical and Applied Pyrolysis, 58-59 (2001) 703-731. [72] R. Font, J. Moltó, S. Egea, J.A. Conesa, Thermogravimetric kinetic analysis and pollutant evolution during the pyrolysis and combustion of mobile phone case, Chemosphere, 85 (2011) 516-524. [73] A. Gálvez, J.A. Conesa, I. Martín-Gullón, R. Font, Interaction between pollutants produced in sewage sludge combustion and cement raw material, Chemosphere, 69 (2007) 387-394. [74] F. Gao, D. Price, G.J. Milnes, B. Eling, C.I. Lindsay, P.T. McGrail, Laser pyrolysis of polymers and its relation to polymer fire behaviour, Journal of Analytical and Applied Pyrolysis, 40–41 (1997) 217-231. [75] N. Gao, A. Li, C. Quan, L. Du, Y. Duan, TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust, Journal of Analytical and Applied Pyrolysis, 100 (2013) 26-32. [76] A.N. García, R. Font, M.M. Esperanza, Thermogravimetric kinetic model of the combustion of a varnish waste based on polyurethane, Energy and Fuels, 15 (2001) 848-855. [77] M.A. Garrido, R. Font, Pyrolysis and combustion study of flexible polyurethane foam, Journal of Analytical and Applied Pyrolysis, 113 (2015) 202-215. [78] M.A. Garrido, R. Font, J.A. Conesa, Pollutant emissions during the pyrolysis and combustion of flexible polyurethane foam, Waste Management, 52 (2016) 138-146. [79] M.A. Garrido, R. Font, J.A. Conesa, Kinetic study and thermal decomposition behavior of viscoelastic memory foam, Energy Conversion and Management, 119 (2016) 327-337. [80] R. Geyer, B. Kuczenski, M. Trujillo, Assessing the Greenhouse Gas Savings Potential of Extended Producer Responsibility for Mattresses and Boxsprings in the United States, Journal of Industrial Ecology, (2015) n/a-n/a. [81] G. Graff, Provided by Omnexus. com Print Polyurethane Recycling Gains as Regulatory and Cost Pressures Mount, (2006). [82] P. Grammelis, P. Basinas, A. Malliopoulou, G. Sakellaropoulos, Pyrolysis kinetics and combustion characteristics of waste recovered fuels, Fuel, 88 (2009) 195-205. [83] E. Granada, L.M. López González, J.L. Míguez, J. Moran, Fuel lignocellulosic briquettes, die design and products study, Renewable Energy, 27 (2002) 561-573. [84] M. Grønli, M.J. Antal, G. Várhegyi, A Round-Robin Study of Cellulose Pyrolysis Kinetics by Thermogravimetry, Industrial & Engineering Chemistry Research, 38 (1999) 2238-2244. [85] B.K. Gullett, A. Touati, J. Huwe, H. Hakk, PCDD and PCDF Emissions from Simulated Sugarcane Field Burning, Environmental Science & Technology, 40 (2006) 6228-6234. [86] B.K. Gullett, B. Wyrzykowska, E. Grandesso, A. Touati, D.G. Tabor, G.S. Ochoa, PCDD/F, PBDD/F, and PBDE Emissions from Open Burning of a Residential Waste Dump, Environmental Science & Technology, 44 (2010) 394-399. [87] Q. Guo, X. Zhang, C. Li, X. Liu, J. Li, TG–MS study of the thermo-oxidative behavior of plastic automobile shredder residues, Journal of Hazardous Materials, 209–210 (2012) 443-448. [88] X. Guo, L. Wang, S. Li, X. Tang, J. Hao, Gasification of waste rigid polyurethane foam: optimizing operational conditions, Journal of Material Cycles and Waste Management, 17 (2014) 560-565. [89] X. Guo, L. Wang, L. Zhang, S. Li, J. Hao, Nitrogenous emissions from the catalytic pyrolysis of waste rigid polyurethane foam, Journal of Analytical and Applied Pyrolysis, 108 (2014) 143-150. [90] X. Guo, W. Zhang, L. Wang, J. Hao, Comparative study of nitrogen migration among the products from catalytic pyrolysis and gasification of waste rigid polyurethane foam, Journal of Analytical and Applied Pyrolysis, 120 (2016) 144-153. [91] W.J. Hall, P.T. Williams, Fast pyrolysis of halogenated plastics recovered from waste computers, Energy and Fuels, 20 (2006) 1536-1549. [92] W.J. Hall, P.T. Williams, Analysis of products from the pyrolysis of plastics recovered from the commercial scale recycling of waste electrical and electronic equipment, Journal of Analytical and Applied Pyrolysis, 79 (2007) 375-386. [93] M. He, B. Xiao, Z. Hu, S. Liu, X. Guo, S. Luo, Syngas production from catalytic gasification of waste polyethylene: Influence of temperature on gas yield and composition, International Journal of Hydrogen Energy, 34 (2009) 1342-1348. [94] J.M. Heikkinen, J.C. Hordijk, W. De Jong, H. Spliethoff, Thermogravimetry as a tool to classify waste components to be used for energy generation, Journal of Analytical and Applied Pyrolysis, 71 (2004) 883-900. [95] H. Henneken, M. Vogel, U. Karst, Determination of airborne isocyanates, Anal Bioanal Chem, 387 (2007) 219-236. [96] M.-L. Henriks-Eckerman, J. Valimaa, C. Rosenberg, Determination of airborne methyl isocyanate as dibutylamine or 1-(2-methoxyphenyl)piperazine derivatives by liquid and gas chromatography, Analyst, 125 (2000) 1949-1954. [97] M. Herrera, G. Matuschek, A. Kettrup, Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI, Polymer Degradation and Stability, 78 (2002) 323-331. [98] M. Herrera, M. Wilhelm, G. Matuschek, A. Kettrup, Thermoanalytical and pyrolysis studies of nitrogen containing polymers, Journal of Analytical and Applied Pyrolysis, 58–59 (2001) 173-188. [99] A. Hilding, Europe's bedding industry meet in Budapest, in, 2014. [100] A.J. Hulme, T.C. Goodhead, Cost effective reprocessing of polyurethane by hot compression moulding, Journal of Materials Processing Technology, 139 (2003) 322-326. [101] INSHT, Límites de exposición profesionales para agentes quimicos 2016, in, 2016. [102] ISO 5660-1:1993, Reaction to fire -- Part 1: Rate of heat release from building products -- (Cone calorimeter method), in, ISO, 1993. [103] ISO 17734-1, Method 17734-1. Determination of organonitrogen compounds in air using liquid chromatography and mass spectrometry -- Part 1: Isocyanates using dibutylamine derivatives, in: I.O.f. Standardization (Ed.), 2013. [104] ISOPA, Densification/Grinding, Fact Sheet Recycling and Recovering Polyurethanes, ISOPA, the European Isocyanates Producers’ Association, (2001). [105] ISOPA, Recycling and recovery of polyurethanes, (2012). [106] S. Jansson, J. Fick, M. Tysklind, S. Marklund, Post-combustion formation of PCDD, PCDF, PCBz, and PCPh in a laboratory-scale reactor: Influence of dibenzo-p-dioxin injection, Chemosphere, 76 (2009) 818-825. [107] H.H.G. Jellinek, K. Takada, Toxic gas evolution from polymers: Evolution of hydrogen cyanide from polyurethanes, Journal of Polymer Science: Polymer Chemistry Edition, 15 (1977) 2269-2288. [108] L. Ji, A. Hervier, M. Sablier, Study on the pyrolysis of polyethylene in the presence of iron and copper chlorides, Chemosphere, 65 (2006) 1120-1130. [109] L. Jiang, J. Liang, X. Yuan, H. Li, C. Li, Z. Xiao, H. Huang, H. Wang, G. Zeng, Co-pelletization of sewage sludge and biomass: The density and hardness of pellet, Bioresource Technology, 166 (2014) 435-443. [110] L. Jiao, H. Xiao, Q. Wang, J. Sun, Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS, Polymer Degradation and Stability, 98 (2013) 2687-2696. [111] L.L. Jiao, H.H. Xiao, Q.S. Wang, J.H. Sun, Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS, Polymer Degradation and Stability, 98 (2013) 2687-2696. [112] T. Kaivosoja, A. Virén, J. Tissari, J. Ruuskanen, J. Tarhanen, O. Sippula, J. Jokiniemi, Effects of a catalytic converter on PCDD/F, chlorophenol and PAH emissions in residential wood combustion, Chemosphere, 88 (2012) 278-285. [113] D. Karlsson, J. Dahlin, Å. Marand, G. Skarping, M. Dalene, Determination of airborne isocyanates as di-n-butylamine derivatives using liquid chromatography and tandem mass spectrometry, Analytica Chimica Acta, 534 (2005) 263-269. [114] D. Karlsson, M. Dalene, G. Skarping, A. Marand, Determination of isocyanic acid in air, Journal of Environmental Monitoring, 3 (2001) 432-436. [115] D. Karlsson, M. Spanne, M. Dalene, G. Skarping, Determination of complex mixtures of airborne isocyanates and aminesPart 4.[dagger] Determination of aliphatic isocyanates as dibutylamine derivatives using liquid chromatography and mass spectrometry, Analyst, 123 (1998) 117-123. [116] D. Karlsson, M. Spanne, M. Dalene, G. Skarping, Airborne thermal degradation products of polyurethane coatings in car repair shops, Journal of Environmental Monitoring, 2 (2000) 462-469. [117] T. Katami, A. Yasuhara, T. Okuda, T. Shibamoto, Formation of PCDDs, PCDFs, and Coplanar PCBs from Polyvinyl Chloride during Combustion in an Incinerator, Environmental Science & Technology, 36 (2002) 1320-1324. [118] J. Kers, P. Kulu, A. Aruniit, V. Laurmaa, P. Križan, L. Šooš, Ü. Kask, Determination of physical, mechanical and burning characteristics of polymeric waste material briquettes, Estonian Journal of Engineering, 16 (2010) 307-316. [119] H. Kim, W. Minami, T. Li, Combustion characteristics and pollutant control by eco-fuel from polyurethane foam, Energy & Fuels, 20 (2006) 575-578. [120] K.-S. Kim, K.-H. Hong, Y.-H. Ko, M.-G. Kim, Emission Characteristics of PCDD/Fs, PCBs, Chlorobenzenes, Chlorophenols, and PAHs from Polyvinylchloride Combustion at Various Temperatures, Journal of the Air & Waste Management Association, 54 (2004) 555-562. [121] S.-S. Kim, F.A. Agblevor, Pyrolysis characteristics and kinetics of chicken litter, Waste Management, 27 (2007) 135-140. [122] P.M.A. Knaub, E.P. Wiltz, H. Wuilay, A New Era for MDI: Flexible Polyurethane Slabstock Foam, Journal of Cellular Plastics, 33 (1997) 159-184. [123] C.A. Krone, T.D. Klingner, Isocyanates, polyurethane and childhood asthma, Pediatric Allergy and Immunology, 16 (2005) 368-379. [124] E. Kwon, M.J. Castaldi, Investigation of mechanisms of polycyclic aromatic hydrocarbons (PAHs) initiated from the thermal degradation of styrene butadiene rubber (SBR) in N2 atmosphere, Environmental science & technology, 42 (2008) 2175-2180. [125] R. Landers, R. Hubel, R. Borgogelli, The importance of cell structure for viscoelastic foams, PU Mag, 1 (2008) 40-47. [126] T. Lanoë, C.L. Simões, R. Simoes, Improving the environmental performance of bedding products by using life cycle assessment at the design stage, Journal of Cleaner Production, 52 (2013) 155-164. [127] D. Lefkowitz, E. Pechter, K. Fitzsimmons, M. Lumia, A.C. Stephens, L. Davis, J. Flattery, J. Weinberg, R.J. Harrison, M.J. Reilly, M.S. Filios, G.E. White, K.D. Rosenman, Isocyanates and work-related asthma: Findings from California, Massachusetts, Michigan, and New Jersey, 1993–2008, American Journal of Industrial Medicine, 58 (2015) 1138-1149. [128] J.N. Leichtnam, D. Schwartz, R. Gadiou, The behaviour of fuel-nitrogen during fast pyrolysis of polyamide at high temperature, Journal of Analytical and Applied Pyrolysis, 55 (2000) 255-268. [129] Y. Li, H. Liu, O. Zhang, High-pressure compaction of municipal solid waste to form densified fuel, Fuel Processing Technology, 74 (2001) 81-91. [130] K. Liu, W. Xie, Z.-B. Zhao, W.-P. Pan, J.T. Riley, Investigation of polycyclic aromatic hydrocarbons in fly ash from fluidized bed combustion systems, Environmental Science & Technology, 34 (2000) 2273-2279. [131] W.X. Liu, H. Dou, Z.C. Wei, B. Chang, W.X. Qiu, Y. Liu, S. Tao, Emission characteristics of polycyclic aromatic hydrocarbons from combustion of different residential coals in North China, Science of The Total Environment, 407 (2009) 1436-1446. [132] X. Liu, Y. Zhou, J. Hao, J. Du, Smoke and toxicity suppression by zinc salts in flame-retardant polyurethane-polyisocyanurate foams filled with phosphonate and chlorinated phosphate, Journal of Applied Polymer Science, 132 (2015) n/a-n/a. [133] A. Lönnermark, P. Blomqvist, Emissions from an automobile fire, Chemosphere, 62 (2006) 1043-1056. [134] M.A. Lopez-Velazquez, V. Santes, J. Balmaseda, E. Torres-Garcia, Pyrolysis of orange waste: A thermo-kinetic study, Journal of Analytical and Applied Pyrolysis, 99 (2013) 170-177. [135] K.-M. Lu, W.-J. Lee, W.-H. Chen, T.-C. Lin, Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends, Applied Energy, 105 (2013) 57-65. [136] Y.S. M. Mustakimah, M. Saikat, Decomposition study of calcium carbonate in cockle shell, Journal of Engineering Science and Technology, 7 (2012) 1-10. [137] J. Madarász, I.M. Szilágyi, F. Hange, G. Pokol, Comparative evolved gas analyses (TG-FTIR, TG/DTA-MS) and solid state (FTIR, XRD) studies on thermal decomposition of ammonium paratungstate tetrahydrate (APT) in air, Journal of Analytical and Applied Pyrolysis, 72 (2004) 197-201. [138] H.F. Mark, Encyclopedia of polymer science and technology, concise, John Wiley & Sons, 2013. [139] Market Research, Global Memory Foam Mattress Market 2015 - 2019, in, Market Research, 2015, pp. 169. [140] S.T. Marks, E. Metcalfe, The pyrolysis of para-toluene isocyanate, Combustion and flame, 107 (1996) 260-270. [141] I. Martín-Gullón, M. Esperanza, R. Font, Kinetic model for the pyrolysis and combustion of poly-(ethylene terephthalate) (PET), Journal of Analytical and Applied Pyrolysis, 58-59 (2001) 635-650. [142] I. Martı́n-Gullón, M.F. Gómez-Rico, A. Fullana, R. Font, Interrelation between the kinetic constant and the reaction order in pyrolysis, Journal of Analytical and Applied Pyrolysis, 68–69 (2003) 645-655. [143] F.J. Mastral, E. Esperanza, P. Garcı́a, M. Juste, Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time, Journal of Analytical and Applied Pyrolysis, 63 (2002) 1-15. [144] P.S. McGraw, J.L. Drake, T.H. Hane, Method for processing contaminated plastic waste, in, Google Patents, 1995. [145] M.O.A. Mohammed, W.-w. Song, Y.-l. Ma, L.-y. Liu, W.-l. Ma, W.-L. Li, Y.-F. Li, F.-y. Wang, M.-y. Qi, N. Lv, D.-z. Wang, A.U. Khan, Distribution patterns, infiltration and health risk assessment of PM2.5-bound PAHs in indoor and outdoor air in cold zone, Chemosphere, 155 (2016) 70-85. [146] J. Moltó, S. Egea, J.A. Conesa, R. Font, Thermal decomposition of electronic wastes: Mobile phone case and other parts, Waste Management, 31 (2011) 2546-2552. [147] J. Moltó, R. Font, J.A. Conesa, Study of the organic compounds produced in the pyrolysis and combustion of used polyester fabrics, Energy & fuels, 20 (2006) 1951-1958. [148] J. Moltó, R. Font, A. Gálvez, J.A. Conesa, Pyrolysis and combustion of electronic wastes, Journal of Analytical and Applied Pyrolysis, 84 (2009) 68-78. [149] J. Moltó, R. Font, A. Gálvez, M. Muñoz, A. Pequenín, Emissions of Polychlorodibenzodioxin/Furans (PCDD/Fs), Dioxin-Like Polychlorinated Biphenyls (PCBs), Polycyclic Aromatic Hydrocarbons (PAHs), and Volatile Compounds Produced in the Combustion of Pine Needles and Cones, Energy & Fuels, 24 (2010) 1030-1036. [150] J. Moltó, R. Font, A. Gálvez, M.D. Rey, A. Pequenín, Analysis of dioxin-like compounds formed in the combustion of tomato plant, Chemosphere, 78 (2010) 121-126. [151] R.I. Muazu, J.A. Stegemann, Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs, Fuel Processing Technology, 133 (2015) 137-145. [152] N.A.T.O.C.o.C.o.M.S. NATO/CCMS, Scientific basis for the development of international toxicity equivalency factor (I-TEF) method of risk assessment for the complex mixtures of dioxins and related compounds. , Report No. 187., (1988). [153] S. Nazaré, R.D. Davis, K. Butler, Assessment of factors affecting fire performance of mattresses: a review, Fire Science Reviews, 1 (2012) 1-27. [154] M. Nielsen, P. Jurasek, J. Hayashi, E. Furimsky, Formation of toxic gases during pyrolysis of polyacrylonitrile and nylons, Journal of Analytical and Applied Pyrolysis, 35 (1995) 43-51. [155] M.M.A. Nikje, A.B. Garmarudi, A.B. Idris, Polyurethane Waste Reduction and Recycling: From Bench to Pilot Scales, Designed Monomers and Polymers, 14 (2011) 395-421. [156] I.C.T. Nisbet, P.K. LaGoy, Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs), Regulatory Toxicology and Pharmacology, 16 (1992) 290-300. [157] B.B. Nyakuma, A. Johari, A. Ahmad, Analysis of the pyrolytic fuel properties of empty fruit bunch briquettes, Journal of Applied Sciences, 12 (2012) 2527. [158] L. Odochian, C. Moldoveanu, D. Maftei, TG–FTIR study on thermal degradation mechanism of PTFE under nitrogen atmosphere and in air. Influence of the grain size, Thermochim. Acta, 598 (2014) 28-35. [159] T.J. Ohlemiller, J. Bellan, F. Rogers, A Model of Smoldering Combustion Applied to Flexible Polyurethane Foams, Combustion and Flame, 36 (1979). [160] N. Ortuño, J. Moltó, S. Egea, R. Font, J.A. Conesa, Thermogravimetric study of the decomposition of printed circuit boards from mobile phones, Journal of Analytical and Applied Pyrolysis, 103 (2013) 189-200. [161] M. Paabo, B.C. Levin, A review of the literature on the gaseous products and toxicity generated from the pyrolysis and combustion of rigid polyurethane foams, Fire and Materials, 11 (1987) 1-29. [162] J.E. Packer, J. Robertson, H. Wansbrough, Chemical Processes in New Zealand, New Zealand Institute of Chemistry, 1998. [163] M. Paraschiv, R. Kuncser, M. Tazerout, T. Prisecaru, New energy value chain through pyrolysis of hospital plastic waste, Applied Thermal Engineering, 87 (2015) 424-433. [164] D.S.N. Parker, F. Zhang, Y.S. Kim, R.I. Kaiser, A. Landera, V.V. Kislov, A.M. Mebel, A.G.G.M. Tielens, Low temperature formation of naphthalene and its role in the synthesis of PAHs (Polycyclic Aromatic Hydrocarbons) in the interstellar medium, Proceedings of the National Academy of Sciences, 109 (2012) 53-58. [165] D.S.W. Pau, C.M. Fleischmann, M.J. Spearpoint, K.Y. Li, Determination of kinetic properties of polyurethane foam decomposition for pyrolysis modelling, Journal of Fire Sciences, 31 (2013) 356-384. [166] PFA, Density, in: InTouch Technical Bulletins Loudon, New Hampshire, USA, 1991. [167] PFA, Examining Viscoelastic Flexible Polyurethane Foam, in, In Touch, 2003. [168] S. Pongpiachan, D. Tipmanee, C. Khumsup, I. Kittikoon, P. Hirunyatrakul, Assessing risks to adults and preschool children posed by PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) during a biomass burning episode in Northern Thailand, Science of The Total Environment, 508 (2015) 435-444. [169] K. Prasad, R. Kramer, N. Marsh, M. Nyden, T. Ohlemiller, M. Zammarano, Numerical simulation of fire spread on polyurethane foam slabs, in: Proceedings of the 11th international conference on fire and materials. Interscience Communications, London, 2009, pp. 697-708. [170] D.A. Purser, P. Grimshaw, The incapacitative effects of exposure to the thermal decomposition products of polyurethane foams, Fire and Materials, 8 (1984) 10-16. [171] D.A.G. Purser, P. , The incapacitative effects of exposure to the thermal decomposition proceducts of polyurethane foams, Fire and Materials 8(1984) 10. [172] X. Qian, L. Song, Y. Hu, R.K.K. Yuen, L. Chen, Y. Guo, N. Hong, S. Jiang, Combustion and Thermal Degradation Mechanism of a Novel Intumescent Flame Retardant for Epoxy Acrylate Containing Phosphorus and Nitrogen, Industrial & Engineering Chemistry Research, 50 (2011) 1881-1892. [173] F. Quadrini, D. Bellisario, L. Santo, Recycling of thermoset polyurethane foams, Polymer Engineering & Science, 53 (2013) 1357-1363. [174] J. Recari, C. Berrueco, S. Abelló, D. Montané, X. Farriol, Gasification of two solid recovered fuels (SRFs) in a lab-scale fluidized bed reactor: Influence of experimental conditions on process performance and release of HCl, H2S, HCN and NH3, Fuel Processing Technology, 142 (2016) 107-114. [175] G. Rein, A. Bar-Ilan, A.C. Fernandez-Pello, J.L. Ellzey, J.L. Torero, D.L. Urban, Modeling of one-dimensional smoldering of polyurethane in microgravity conditions, Proceedings of the Combustion Institute, 30 (2005) 2327-2334. [176] G. Rein, C. Lautenberger, A.C. Fernandez-Pello, J.L. Torero, D.L. Urban, Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion, Combustion and Flame, 146 (2006) 95-108. [177] F. Reisen, M. Bhujel, J. Leonard, Particle and volatile organic emissions from the combustion of a range of building and furnishing materials using a cone calorimeter, Fire Safety Journal, 69 (2014) 76-88. [178] B. Roberge, S. Aubin, C. Ostiguy, J. Lesage, Guide for Safe Use of Isocyanates. An Industrial Hygiene Approach, IRSST - Communications and Knowledge Transfer Division, Montréal, 2013. [179] T. Rogaume, L.B. Valencia, E. Guillaume, F. Richard, J. Luche, G. Rein, J.L. Torero, Development of the Thermal Decomposition Mechanism of Polyether Polyurethane Foam Using Both Condensed and Gas-Phase Release Data, Combustion Science and Technology, 183 (2011) 627-644. [180] F.E. Rogers, T.J. Ohlemiller, Pyrolysis Kinetics of a Polyurethane Foam by Thermogravimetry; A General Kinetic Method, Journal of Macromolecular Science: Part A - Chemistry, 15 (1981) 169-185. [181] M. Rogulska, A. Kultys, J. Lubczak, New thermoplastic polyurethane elastomers based on aliphatic-aromatic chain extenders with different content of sulfur atoms, Journal of Thermal Analysis and Calorimetry, 121 (2015) 397-410. [182] C. Rosenberg, Direct determination of isocyanates and amines as degradation products in the industrial production of polyurethane-coated wire, The Analyst, 109 (1984) 859-866. [183] D. Rosu, N. Tudorachi, L. Rosu, Investigations on the thermal stability of a MDI based polyurethane elastomer, Journal of Analytical and Applied Pyrolysis, 89 (2010) 152-158. [184] P.H. Ruokojärvi, I.A. Halonen, K.A. Tuppurainen, J. Tarhanen, J. Ruuskanen, Effect of Gaseous Inhibitors on PCDD/F Formation, Environmental Science & Technology, 32 (1998) 3099-3103. [185] C. Ryu, K. Finney, V.N. Sharifi, J. Swithenbank, Pelletised fuel production from coal tailings and spent mushroom compost — Part I: Identification of pelletisation parameters, Fuel Processing Technology, 89 (2008) 269-275. [186] S.-I. Sakai, K. Hayakawa, H. Takatsuki, I. Kawakami, Dioxin-like PCBs Released from Waste Incineration and Their Deposition Flux, Environmental Science & Technology, 35 (2001) 3601-3607. [187] N.E. Sánchez, A. Callejas, Á. Millera, R. Bilbao, M.U. Alzueta, Influence of the Oxygen Presence on Polycyclic Aromatic Hydrocarbon (PAH) Formation from Acetylene Pyrolysis under Sooting Conditions, Energy & Fuels, 27 (2013) 7081-7088. [188] D.Α. Sarigiannis, S.P. Karakitsios, D. Zikopoulos, S. Nikolaki, M. Kermenidou, Lung cancer risk from PAHs emitted from biomass combustion, Environmental Research, 137 (2015) 147-156. [189] D. Schuetzle, R. Schuetzle, S. Kent Hoekman, B. Zielinska, The effect of oxygen on formation of syngas contaminants during the thermochemical conversion of biomass, International Journal of Energy and Environmental Engineering, 6 (2015) 405-417. [190] B. Shen, Qinlei, Study on MSW catalytic combustion by TGA, Energy Conversion and Management, 47 (2006) 1429-1437. [191] S. Shoaib, K. Shahzad Maqsood, G. Nafisa, A. Waqas, S. Muhammad, J. Tahir, Synthesis and Characterization of Visco-Elastic (VE) Polyurethane Foam, International Journal of Innovation and Applied Studies, 9 (2014) 1878-1886. [192] Y. Shu, F. Zhang, H. Wang, J. Zhu, G. Tian, C. Zhang, Y. Cui, J. Huang, An experimental study of NO reduction by biomass reburning and the characterization of its pyrolysis gases, Fuel, 139 (2015) 321-327. [193] D. Simón, A.M. Borreguero, A. De Lucas, J.F. Rodríguez, Glycolysis of flexible polyurethane wastes containing polymeric polyols, Polymer Degradation and Stability, 109 (2014) 115-121. [194] D. Simón, A.M. Borreguero, A. de Lucas, J.F. Rodríguez, Glycolysis of viscoelastic flexible polyurethane foam wastes, Polymer Degradation and Stability, 116 (2015) 23-35. [195] D. Simón, A.M. Borreguero, A. De Lucas, J.F. Rodríguez, Valorization of crude glycerol as a novel transesterification agent in the glycolysis of polyurethane foam waste, Polymer Degradation and Stability, 121 (2015) 126-136. [196] D. Simón, M.T. García, A. De Lucas, A.M. Borreguero, J.F. Rodríguez, Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst: Study on the influence of reaction parameters, Polymer Degradation and Stability, 98 (2013) 144-149. [197] S. Singh, V. Prakash, The effect of temperature on PAHs emission from incineration of acrylic waste, Environmental Monitoring and Assessment, 127 (2007) 73-77. [198] S. Singh, C. Wu, P.T. Williams, Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques, Journal of Analytical and Applied Pyrolysis, 94 (2012) 99-107. [199] M. Spanne, H. Tinnerberg, M. Dalene, G. Skarping, Determination of complex mixtures of airborne isocyanates and amines. Part 1. Liquid chromatography with ultraviolet detection of monomeric and polymeric isocyanates as their dibutylamine derivatives, Analyst, 121 (1996) 1095-1099. [200] A.A. Stec, T.R. Hull, Assessment of the fire toxicity of building insulation materials, Energy and Buildings, 43 (2011) 498-506. [201] A.A. Stec, J. Readman, P. Blomqvist, D. Gylestam, D. Karlsson, D. Wojtalewicz, B.Z. Dlugogorski, Analysis of toxic effluents released from PVC carpet under different fire conditions, Chemosphere, 90 (2013) 65-71. [202] R.P. Streicher, C.M. Reh, R.J. Key-Schwartz, P.C. Schlecht, M.E. Cassinelli, P.F. O'Connor, Determination of Airborne Isocyanate Exposure: Considerations in Method Selection, AIHAJ - American Industrial Hygiene Association, 61 (2000) 544-556. [203] H. Sui, X. Ju, X. Liu, K. Cheng, Y. Luo, F. Zhong, Primary thermal degradation effects on the polyurethane film, Polymer Degradation and Stability, 101 (2014) 109-113. [204] O. Terakado, H. Yanase, M. Hirasawa, Pyrolysis treatment of waste polyurethane foam in the presence of metallic compounds, Journal of Analytical and Applied Pyrolysis, 108 (2014) 130-135. [205] S. Thomas, M.J. Wornat, The effects of oxygen on the yields of polycyclic aromatic hydrocarbons formed during the pyrolysis and fuel-rich oxidation of catechol, Fuel, 87 (2008) 768-781. [206] Y. Tian, J. Zhang, W. Zuo, L. Chen, Y. Cui, T. Tan, Nitrogen Conversion in Relation to NH3 and HCN during Microwave Pyrolysis of Sewage Sludge, Environmental Science & Technology, 47 (2013) 3498-3505. [207] H. Tinnerberg, M. Spanne, M. Dalene, G. Skarping, Determination of complex mixtures of airborne isocyanates and amines. Part 2. Toluene diisocyanate and aminoisocyanate and toluenediamine after thermal degradation of a toluene diisocyanate-polyurethane, Analyst, 121 (1996) 1101-1106. [208] Y.-C. Tu, Polyurethane foam from novel soy-based polyols, in: Faculty of the Graduate School, University of Missouri, 2008. [209] N. Tudorachi, A.P. Chiriac, TGA/FTIR/MS study on thermal decomposition of poly(succinimide) and sodium poly(aspartate), Polymer Testing, 30 (2011) 397-407. [210] J. Turner, Recycling special: Europe, in: European Bedding Indrustries'Association Magazine, 2014, pp. 28-34. [211] US EPA, Method 1613. Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS., in, United States Environmental Protection Agency. Office of Solid Waste, Springfield: National Technical Information Service, 1994b. [212] US EPA, Procedure for collection and analysis of ammonia in stationary sources (CTM-027). in, United States Environmental Protection Agency, Washington, D.C., 1997. [213] US EPA, Handbook for air toxic emission inventory development. Volume I: Stationary sources., in, United States Environmental Protection Agency. Office of Air Quality Planning and Standards, 1998. [214] US EPA, Method 9056A. Determination of inorganic anions by ion chromatography, in: US EPA (Ed.) SW-846, United States Environmental Protection Agency, Office of Solid Waste, Washington, D.C., 2000. [215] US EPA, Method 3545A: Pressurized Fluid Extraction (PFE). Revision 1, in, United States Environmental Protection Agency. Office of Solid Waste, Washington, D.C., 2007, pp. 1-16. [216] US EPA, Method 8270D. Semivolatile organic compounds by GC/MS., in, United States Environmental Protection Agency. Office of Solid Waste, Washington, D.C., 2007. [217] US EPA, Method 5050. Bomb preparation method for solid waste, in: US EPA (Ed.) SW-846, United States Environmental Protection Agency, Office of Water, Office of Science and Technology, Spfingfield, 2007a. [218] US EPA, Method 1668C. Chlorinated Biphenyl Congeners in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRM, in, United States Environmental Protection Agency. Office of Water. Office of Science and Technology, Washington, D.C., 2010. [219] US EPA, Method 8270D. Semivolatile organic compounds by GC/MS., in, United States Environmental Protection Agency. Office of Solid Waste, Washington, D.C., 2014. [220] M. Van den Berg, L.S. Birnbaum, M. Denison, M. De Vito, W. Farland, M. Feeley, H. Fiedler, H. Hakansson, A. Hanberg, L. Haws, M. Rose, S. Safe, D. Schrenk, C. Tohyama, A. Tritscher, J. Tuomisto, M. Tysklind, N. Walker, R.E. Peterson, The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds, Toxicological Sciences, 93 (2006) 223-241. [221] P.-S. Wang, W.-Y. Chiu, L.-W. Chen, B.-L. Denq, T.-M. Don, Y.-S. Chiu, Thermal degradation behavior and flammability of polyurethanes blended with poly(bispropoxyphosphazene), Polymer Degradation and Stability, 66 (1999) 307-315. [222] M. Watanabe, C. Nakata, W. Wu, K. Kawamoto, Y. Noma, Characterization of semi-volatile organic compounds emitted during heating of nitrogen-containing plastics at low temperature, Chemosphere, 68 (2007) 2063-2072. [223] C. Wu, P.T. Williams, Effects of Gasification Temperature and Catalyst Ratio on Hydrogen Production from Catalytic Steam Pyrolysis-Gasification of Polypropylene, Energy & Fuels, 22 (2008) 4125-4132. [224] Q. Wu, J. Wei, Prediction of Inter-Provincial Carbon Dioxide Emissions in China: Based on Logistic Model, in: 2015 International Conference on Education Reform and Modern Management, Atlantis Press, 2015. [225] W. Yang, Q. Dong, S. Liu, H. Xie, L. Liu, J. Li, Recycling and disposal methods for polyurethane foam wastes, Procedia Environmental Sciences, 16 (2012) 167-175. [226] Z. Yang, S. Zhang, L. Liu, X. Li, H. Chen, H. Yang, X. Wang, Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor, Bioresource Technology, 110 (2012) 595-602. [227] F.-S. Yen, L.-L. Lin, J.-L. Hong, Hydrogen-Bond Interactions between Urethane−Urethane and Urethane−Ester Linkages in a Liquid Crystalline Poly(ester−urethane), Macromolecules, 32 (1999) 3068-3079. [228] C.Y. Yu, W.J. Lee, Characteristics of glycolysis products of polyurethane foams made with polyhydric alcohol liquefied Cryptomeria japonica wood, Polymer Degradation and Stability, 101 (2014) 60-64. [229] F. Zannikos, S. Kalligeros, G. Anastopoulos, E. Lois, Converting Biomass and Waste Plastic to Solid Fuel Briquettes, Journal of Renewable Energy, 2013 (2013) 9. [230] R. Zevenhoven, Treatment and disposal of polyurethane wastes:options for recovery and recycling, in: H.U.o.T.E.E.a.E. Protection (Ed.), Espoo 2003. [231] R. Zevenhoven, Treatment and disposal of polyurethane wastes: options for recovery and recycling, Helsinki University of Technology, 2004. [232] R. Zevenhoven, P. Kilpinen, Chapter 4: Nitrogen, in: H.U.o. Technology (Ed.) Control of pollutants in flue gases and fuel gases, 2002. [233] M.-X. Zhan, J.-Y. Fu, T. Chen, X.-Q. Lin, X.-D. Li, J.-H. Yan, A. Buekens, Suppression of dioxins by S-N inhibitors in pilot-scale experiments, Environmental Science and Pollution Research, (2016) 1-15. [234] H.-J. Zhang, Y.-W. Ni, J.-P. Chen, Q. Zhang, Influence of variation in the operating conditions on PCDD/F distribution in a full-scale MSW incinerator, Chemosphere, 70 (2008) 721-730. [235] Y. Zhang, S. Kajitani, M. Ashizawa, K. Miura, Peculiarities of Rapid Pyrolysis of Biomass Covering Medium- and High-Temperature Ranges, Energy & Fuels, 20 (2006) 2705-2712. [236] Y. Zhang, Z. Xia, H. Huang, H. Chen, Thermal degradation of polyurethane based on IPDI, Journal of Analytical and Applied Pyrolysis, 84 (2009) 89-94. [237] Y. Zhao, Y. Zhang, H. Zhang, Q. Wang, Y. Guo, Structural characterization of carbonized briquette obtained from anthracite powder, Journal of Analytical and Applied Pyrolysis, 112 (2015) 290-297. [238] H. Zhou, Y. Long, A. Meng, Q. Li, Y. Zhang, Classification of municipal solid waste components for thermal conversion in waste-to-energy research, Fuel, 145 (2015) 151-157. [239] H. Zhou, C. Wu, J.A. Onwudili, A. Meng, Y. Zhang, P.T. Williams, Influence of process conditions on the formation of 2–4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride, Fuel Processing Technology, 144 (2016) 299-304. [240] C. Zhu, S. Liu, H. Liu, J. Yang, X. Liu, G. Xu, NOx emission characteristics of fluidized bed combustion in atmospheres rich in oxygen and water vapor for high-nitrogen fuel, Fuel, 139 (2015) 346-355. [241] K.M. Zia, H.N. Bhatti, I. Ahmad Bhatti, Methods for polyurethane and polyurethane composites, recycling and recovery: A review, Reactive and Functional Polymers, 67 (2007) 675-692.