Towards a gauge polyvalent numerical relativity codeNumerical methods, boundary conditions and di erent formulations

  1. Bona Casas, Carles
Dirigée par:
  1. Carles Bona Garcia Directeur/trice
  2. Joan Massó Bennásar Directeur/trice

Université de défendre: Universitat de les Illes Balears

Fecha de defensa: 08 avril 2011

Jury:
  1. José María Ibáñez President
  2. Carlos Palenzuela Luque Secrétaire
  3. Denis Pollney Rapporteur
  4. José Antonio Pons Botella Rapporteur
  5. Luciano Rezzolla Rapporteur

Type: Thèses

Résumé

La present tesi doctoral versa sobre la resolucio numèrica de les equacions d'Einstein de la Teoria de la Relativitat. Es presenta: una nova familia de mètodes computacionals amb variació total acotada i d'implementació eficient que permet resoldre equacions diferencials amb derivades parcials de tipus hiperbòlic; un codi que implementa aquests mètodes juntament amb el formalisme Z4 per a aconseguir resoldre per primera vegada un colapse gravitacional en 3 dimensions simulant l'interior del forat negre amb un camp escalar i fent us de coordenades normals sense que l'eleccio de coordenades normals sigui tanmateix un requisit per al funcionament del codi; unes condicions de contorn que preserven les lligadures d'energia i moment provades fins i tot en situacions de camp fort i en 3 dimensions; una formulació lagrangiana dels formalismes de les equacions d'Einstein que s'empren habitualment dins el camp de la Relativitat Numèrica i una formulació conforme de les equacions Z4 que permet la simulacio del col·lapse gravitacional amb unes dades inicials de tipus punxada (de l'anglès puncture).