FSR-BayModelo probabilístico para la fusión sensorial robótica

  1. Aznar Gregori, Fidel
unter der Leitung von:
  1. Ramón Rizo Aldeguer Doktorvater
  2. Mar Pujol López Doktormutter

Universität der Verteidigung: Universitat d'Alacant / Universidad de Alicante

Fecha de defensa: 13 von Juni von 2006

Gericht:
  1. Alfons Crespo Lorente Präsident/in
  2. Faraón Llorens Largo Sekretär
  3. Emilio Santiago Corchado Rodríguez Vocal
  4. Juan Manuel Corchado Rodríguez Vocal
  5. José Simó Vocal
Fachbereiche:
  1. CIENCIA DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL

Art: Dissertation

Teseo: 129386 DIALNET lock_openRUA editor

Zusammenfassung

Los humanos y los animales han evolucionado desarrollando la capacidad de utilizar sus sentidos para sobrevivir, La fusión sensorial, que es uno de los pilares de esta evolución, se realiza de forma natural por animales y humanos para conseguir una mejor interacción con el entorno circundante. La emergencia de nuevos sensores, técnicas de procesamiento avanzado, y hardware de proceso mejorado, han hecho viable la fusión de muchos tipos de datos. Actualmente los sistemas de fusión sensorial se han utilizado de manera extensiva para el seguimiento de objetos, identificación automática, razonamiento, etc. Aparte de otras muchas áreas de aplicación (como la monitorización de sistemas complejos, el control automático de fabricación industrial?) las técnicas de fusión también se utilizan en el campo de la inteligencia artificial y la robótica. Esta tesis aporta el modelo FSR-BAY, para la fusión sensorial robótica. Este modelo tiene en cuenta algunos aspectos que desde nuestro punto de vista han sido tratados de manera secundaria por la mayoría de las arquitecturas de fusión actuales: la información incompleta e incierta, las capacidades de aprendizaje y el utilizar una representación homogénea de la información, independiente del nivel de fusión. También se proporcionan dos casos de estudio del modelo propuesto aplicado a un agente autónomo. El primer caso trata la fusión cooperativa de la información utilizando para fusionar información proveniente de varios sensores de un mismo tipo. El segundo caso fusiona de manera competitiva información tanto heterogénea como homogénea.