On multicollinearity and the value of the shape parameter in the term structure Nelson-Siegel model

  1. Angel León Valle
  2. Antonio Rubia Serrano
  3. Lidia Sanchís Marco
Revista:
Aestimatio: The IEB International Journal of Finance

ISSN: 2173-0164

Año de publicación: 2018

Número: 16

Páginas: 8-29

Tipo: Artículo

Otras publicaciones en: Aestimatio: The IEB International Journal of Finance

Resumen

Este artículo investiga la sensibilidad de las cargas factoriales del modelo dinámico de Nelson y Siegel al valor del parámetro de forma l, y analiza el problema de la multicolinealidad y cómo mitigarlo en el proceso de estimación. En primer lugar, se obtiene que la selección de un l fijo no conduce a la optimalidad debido a que pudiera dar lugar a problemas de multicolinealidad. En segundo lugar, se observa una diferencia sustancial en los resultados de predicción entre los procedimientos tradicionales de estimación y el método de regresión alomada (ridge regression). Finalmente, se implementa un ejercicio de simulación de Monte Carlo con el fin de estudiar la distribución estadística de de las estimaciones de los parámetros del modelo, para comprobar las diferencias respecto a los valoresreales. Se observa que la multicolinealidad entre las cargasfactoriales del modelo de NS puede dar lugar, en el caso de estimación mínimo cuadrática lineal con parámetro de forma fijo, a mayores diferencias entre las estimaciones y los valores reales de los parámetros del modelo. La regresión alomada corrige estas diferencias y da lugar a estimaciones más estables que los procedimientos de estimación, lineal o no lineal, mínimo cuadráticos ordinarios.

Referencias bibliográficas

  • Abeling, P. (2013). The optimal Nelson-Siegel model within the Solvency II framework, White paper series, RiskQuest.
  • Annaert, J., Claes, A., De Ceuster, M. and Zhang, H. (2013). Estimating the spot rate curve using the Nelson-Siegel model: a ridge regression approach, International Review of Economics and Finance, 27, pp. 482-496
  • BIS (2005). Zero-Coupon Yield Curves: Technical Documentation, Bank for International Settlements, Basel.
  • Björk, T. and Christensen, B. (1999). Interest Rate Dynamics and Consistent Forward Rate Curves, Mathematical Finance, 9, pp. 323-348.
  • Bliss, R.R. (1997). Testing Term Structure Estimation Methods, Advances in Futures and Options Research, 9, pp. 197-231.
  • Cairns, A.J.G. and Pritchard, D.J. (2001). Stability of Descriptive Models for the Term Structure of Interest Rates with Applications to German Market Data, British Actuarial Journal, 7, pp. 467-507.
  • Coroneo, L., Nyholm, K. and Vidova-Koleva, R. (2011). How arbitrage-free is the Nelson-Siegel model?, Journal of Empirical Finance, 18(3), pp. 393-407.
  • Cox, J., Ingersoll, J.E. and Ross, S.A. (1985). A Theory of the Term Structure of Interest Rates, Econometrica, 53, pp. 385-407.
  • De Pooter, M. (2007). Examining the Nelson-Siegel class of term structure models, Tinberger Institute Discussion Paper, TI 2007-043/4.
  • De Pooter, M., Ravazzolo, F. and van Dijk, D. (2007). Predicting the Term Structure of Interest Rates: Incorporating Parameter Uncertainty, Model Uncertainty and Macroeconomic Information, Tinbergen Institute Discussion Paper TI 2007-028/4.
  • Diebold, F.X., Ji, L., and Li, C. (2004). A Three-Factor Yield Curve Model: Non-Affine Structure, Systematic Risk Sources, and Generalized Duration. In L.R. Klein (ed.), Long-Run Growth and Short-Run Stabilization: Essays in Memory of Albert Ando. Edward Elgar, Cheltenham, U.K., pp. 240-274.
  • Diebold, F.X. and Rudebusch, G.D. (2013). Yield curve modelling and forecasting: the dynamic Nelson-Siegel approach, Princeton University Press, Princeton.
  • Diebold, F.X., Rudebusch, G.D. and Aruoba, B. (2006). The Macroeconomy and the Yield Curve: a Dynamic Latent Factor Approach, Journal of Econometrics, 131, pp. 309-338.
  • Diebold, F.X. and Li, C. (2006). Forecasting the term structure of Government bond yields. Journal of Econometrics, 130(2), pp. 337-364.
  • Diebold, F.X., Li, C. and Yue, V.Z. (2008). Global yield curve dynamics and interactions: a generalized Nelson-Siegel approach, Journal of Econometrics, 146, pp. 351-363.
  • Engle, R.F. (2002). Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models, Journal of Business and Economic Statistics, 20(3), pp. 339-50.
  • Engle, R.F. (2009). Anticipating correlations, Princeton University Press, Princeton.
  • European Central Bank (2008). The new Euro area yield curves, Monthly bulletin, February, pp. 95-103.
  • Fabozzi, F.J., Martellini, L. and Priaulet, P. (2005). Predictability in the shape of the term structure of interest rates, Journal of Fixed Income, 15(1), pp. 40-53
  • Ferstl, R. and Weissensteiner, A. (2011). Asset-liability management under investment opportunities, Journal of Banking and Finance, 35(1), pp. 182-192.
  • Goukasian, L. and Cialenco, I. (2006). The reaction of term structure of interest rates to monetary policy actions, Journal of Fixed Income, 16(2), pp. 76-91.
  • Hautsch, N. and Yang, F. (2010). Bayesian inference in a stochastic volatility Nelson-Siegel model, SFB 649 Discussion Paper 2010-004, Humboldt University, Berlin.
  • Hull, J. and White, A. (1990). Pricing Interest Rate Derivative Securities, Review of Financial Studies, 3, pp. 573-92.
  • Jakas, V, (2011). Theory and Empirics of an affine Term Structure. Model Applied to European Data, AESTIMATIO, The IEB International Journal of Finance, 2, pp. 2-19. 1
  • Koopman, J.S., Mallee, M.I.P. and van der Wel, M. (2010). Analyzing the term structure of interest rates using the dynamic Nelson-Siegel model with time-varying parameters, Journal of Business and Economic Statistics, 28(3), pp. 329-343.
  • Kutner, M.H., Nachtsheim, C.J., Neter, J. and Li, W. (2004). Applied Linear Statistical Models (5th Edition), McGrawHill, London.
  • Litterman, R. and Scheinkman, J. (1991). Common Factors Affecting Bond Returns, Journal of Fixed Income, 1(1), pp. 54-61.
  • Martellini, L. and Meyfredi, J.C. (2007). A copula approach to Value-at-Risk estimation for fixed-income portfolios, Journal of Fixed Income, 17(1), pp. 5-15.
  • Molenaars, T.K. and Reinerink, N.H. and Hemminga, M.A. (2013). Forecasting the yield curve Forecast performance of the dynamic Nelson-Siegel model from 1971 to 2008.
  • Molenaars, T.K., Reinerink, N.H. and Hemminga, M.A. (2015). Forecasting the yield curve: art or science?
  • Mumtaz, H. and Surico, P. (2009). Time-varying yield curve dynamics and monetary policy, Journal of Applied Econometrics, 24(6), pp. 895-913.
  • Nelson, C. and Siegel, A.F. (1987). Parsimonious modelling of yield curves, Journal of Business, 60, pp. 473-489.
  • Rezende, R.B. and Ferreira, M.S. (2011). Modeling and Forecasting the yield curve by an extended Nelson-Siegel class of models: a Quantile Auto-regression Approach, Journal of Forecasting, 32(2), pp. 111-123.
  • Svensson, L.E.O. (1994). Estimating and Interpreting Forward Interest Rates: Sweden 1992-1994, NBER Working Paper Series, 4871.
  • Sundaram, R.K. and Das, S.R. (2010). Derivatives: principles and practice, McGraw-Hill Irwin, New York.
  • Vasicek, O.A. (1977). An Equilibrium Characterization of the Term Structure, Journal of Financial Economics, 5, pp. 177-188.
  • Vinod, H.D. and Ullah, A. (1981). Recent Advances in Regression Models, Marcel Dekker, New York.
  • Yu, W.C. and Salyards, D. (2009). Parsimonious Modeling and Forecasting of Corporate Yield Curve, Journal of Forecasting, 28(1), pp. 73-88.
  • Yu, W.C. and Zivot, E. (2011). Forecasting the term structures of Treasury and corporate yields using dynamic Nelson-Siegel models, International Journal of Forecasting, 27(2), pp. 579-591.