On downside risk predictability through liquidity and trading activitya quantile regression approach

  1. Antonio Rubia Serrano 2
  2. Lidia Sanchis-Marco 1
  1. 1 Universidad de Castilla-La Mancha
    info

    Universidad de Castilla-La Mancha

    Ciudad Real, España

    ROR https://ror.org/05r78ng12

  2. 2 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

Revista:
Working papers = Documentos de trabajo: Serie AD

Año de publicación: 2011

Número: 14

Páginas: 1-38

Tipo: Documento de Trabajo

Resumen

Most downside risk models implicitly assume that returns are a sufficient statistic with which to forecast the daily conditional distribution of a portfolio. In this paper, we address this question empirically and analyze if the variables that proxy for market liquidity and trading conditions convey valid information to forecast the quantiles of the conditional distribution of several representative market portfolios. Using quantile regression techniques, we report evidence of predictability that can be exploited to improve. Value at Risk forecasts. Including trading- and spread-related variables improves considerably the forecasting performance.