Algunos problemas de aproximación óptima en espacios normados

  1. Pakhrou, Tijani
Supervised by:
  1. José Javier Mendoza Casas Director

Defence university: Universidad Complutense de Madrid

Fecha de defensa: 06 July 2004

Committee:
  1. Fernando Bombal Gordón Chair
  2. Juan Ferrera Cuesta Secretary
  3. José Antonio Bonet Solves Committee member
  4. Carlos Benítez Rodríguez Committee member
  5. Santiago Díaz Madrigal Committee member

Type: Thesis

Abstract

La tesis se plantea como objetivo principal la caracterización de espacios prehilbert a través de propiedades de localización de centros de Chebishev, de centros de Fermat, de p-centros, o, con más generalidad, de gamma-centros (gamma norma monótona). El punto de partida es una caracterización en términos de centros de Chbyshev que presenta Amir en su libro (Characterizations of Inner Product Spaces, Birkhauser 1986). En la tesis, entre otras cosas se prueba que la caracterización de Amir es falsa y se dan alterantivas para modificarla de modo que se obtengan caracterizaciones verdaderas. También se plantean y resuelven problemas de Aproximación simultánea en espacios de funciones integrables Bochener. Los pulmones de Aproximación simultánea se consideran tanto desde el punto de vista de Saidi, Hussein y Khalil, como del de Li y Watson.