Analysis of eHealth knowledge discovery systems in the TASS 2018 Workshop

  1. Alejandro Piad-Morffis
  2. Yoan Gutiérrez
  3. Suilan Estévez-Velarde
  4. Yudivián Almeida-Cruz
  5. Andrés Montoyo
  6. Rafael Muñoz
Journal:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Year of publication: 2019

Issue: 62

Pages: 13-20

Type: Article

More publications in: Procesamiento del lenguaje natural

Sustainable development goals

Abstract

This paper presents an analysis of Task 3 eHealth-KD challenge in the TASS 2018Workshop. The challenge consisted of the extraction of concepts, actions, and their corresponding semantic relations from health-related documents written in the Spanish language. The documents were manually annotated with a schema based on triples (Subject, Action, Target) and an additional set of semantic relations. Several research teams presented computational systems, obtaining relevant results in different subtasks. In this paper, the approaches performed by each team are analyzed and the most promising lines for future development are highlighted and discussed. Moreover, an in-depth analysis of the results is presented focusing on the main characteristics of each subtask. The overall eHealth-KD analysis has indicated that the Knowledge Discovery (KD) task, specifically focused on concrete domains and languages, represents a rich area for further research. In addition, this study considers that the fusion of machine learning {especially deep learning techniques{ and knowledge-based approaches will benefit the KD task.

Funding information

This research has been partially supported by a Carolina Foundation grant in agreement with University of Alicante and University of Havana, sponsoring to Suilan Estevez-Velarde. Moreover, it has also been partially funded by both aforementioned universities and General-itat Valenciana through the projects PROM-ETEU/2018/089, PINGVALUE3-18Y and So-cialUniv 2.0(ENCARGOINTERNOOMNI-1).

Funders

Bibliographic References

  • Doing-Harris, K. M., & Zeng-Treitler, Q. (2011). Computer-assisted update of a consumer health vocabulary through mining of social network data. Journal of medical Internet research, 13 (2).
  • Giunchiglia, F., & Fumagalli, M. (2017). Teleologies: Objects, actions and functions. In International conference on conceptual modeling (pp. 520–534).
  • Gonzalez-Hernandez, G., Sarker, A., O’Connor, K., & Savova, G. (2017). Capturing the patient’s perspective: a review of advances in natural language processing of health-related text. Yearbook of medical informatics, 26 (01), 214–227.
  • Liu, H., Bielinski, S. J., Sohn, S., Murphy, S., Wagholikar, K. B., Jonnalagadda, S. R., . . . Chute, C. G. (2013). An information extraction framework for cohort identification using electronic health records. AMIA Summits on Translational Science Proceedings, 2013 , 149.
  • López-Ubeda, P., Díaz-Galiano, M. C., Martín-Valdivia, M. T., & Urena
  • Lopez, L. A. (2018). Sinai en tass 2018 task 3. clasificando acciones y conceptos con umls en medline. In Tass 2018 – taller de análisis semántico en la sepln.
  • Martínez-Cámara, E., Almeida-Cruz, Y., Díaz-Galiano, M. C., Estévez-Velarde, S., García-Cumbreras, M. A., GarcíaVega, M., . . . Julio, V.-R. (2018, September). Overview of TASS 2018: Opinions, health and emotions. In Proceedings of tass 2018: Workshop on semantic analysis at sepln (tass 2018) (Vol. 2172). Sevilla, Spain: CEURWS.
  • Medina, S., & Turmo, J. (2018). Joint classification of key-phrases and relations in electronic health documents. In Tass 2018 – taller de análisis semántico en la sepln.
  • Moreno, I., Boldrini, E., Moreda, P., & Romá-Ferri, M. T. (2017). Drugsemantics: a corpus for named entity recognition in spanish summaries of product characteristics. Journal of biomedical informatics, 72 , 8–22.
  • Palatresi, J. V., & Hontoria, H. R. (2018). Medical knowledge discovery by combining multiple techniques and resources. In Tass 2018 – taller de análisis semántico en la sepln.
  • Suarez-Paniagua, V., Segura-Bedmar, I., & Martínez, P. (2018). Labda at tass2018 task 3: Convolutional neural networks for relation classification in spanish ehealth documents. In Tass 2018 – taller de análisis semántico en la sepln.
  • Van Landeghem, S., Ginter, F., Van de Peer, Y., & Salakoski, T. (2011). Evex: A pubmed-scale resource for homologybased generalization of text mining predictions. In Proceedings of bionlp 2011 workshop (pp. 28–37). Stroudsburg, PA, USA: Association for Computational Linguistics.
  • Zavala, R. M. R., Martínez, P., & SeguraBedmar, I. (2018). A hybrid bi-lstm-crf model for knowledge recognition from ehealth documents. In Tass 2018 – taller de análisis semántico en la sepln.